UREA PLANT

Introduction

• Urea (identified 1773), the first organic compound prepared by inorganic synthesis (1828 Wohler)

 $NH_3 + HCNO \rightarrow CO(NH_2)_2$

- Commercial production started in 1922 Germany, 1932 USA and 1935 – UK.
- Urea has been considered as slow release fertilizer since it must undergo two transportation
 - 1. Hydrolysis: $CO(NH_2)_2 + H_2O \rightarrow 2NH_3 + CO_2$
 - 2. Nitrification: $NH_3 \rightarrow Nitrite$ or Nitrate (Microbes, moist and warm soil)
- Biuret is the impurity in urea.
- More than 50 M tons is produced annually

Uses of Urea

- Main N₂ fertilizer, specially for the flooded region.
- Cattle feed supplement where it is cheap.
- Feed material for melamine plastics and various glues (Urea – Formaldehye, urea – melamine – formaldehyde)
- Use: Prill or microprill (0.2-0.4 mm), liquid mixture of urea (±75% solution), molasses, phosphoric acid.

Properties of Urea

Molecular weight	60.06
N ₂ Content, %	46.6
Color	White
Specific gravity	1.335
Melting point °C	132.7
Critical relative humidity	
20°C	81%
30°C	73%
Specific heat 20°C, Cal/g°C	0.32
Heat of solution in water (endothermic) Cal/gºC	-57.8

Process Operating Variables

```
Reactions:

2NH_3 + CO_2 \rightarrow H_2NCOONH_4

H_2NCOONH_4 \rightarrow H_2NCONH_2 + H_2O

Temperature:
```

- Rate of Carbamate decomposition reaction increases with temperature. It is slow at < 150°C (NH₃:CO₂, stoichiometric) and quite rapid at 210°C.
- 180-210 °C in 0.3 to 1.0 hr is optimum for most process. At high temperature, corrosion rate is high.

Pressure:

• Preferred pressure is 140 – 250 atm.

Mole ratio of NH₃: CO₂

 Excess ammonia above the stoichiometric ratio favors the rate of reaction. (3:1 = NH₃: CO₂)

Other factors:

- The presence of water decreases conversion.
- The presence of small amount of O₂, decreases corrosion.

Optimum Conditions

 Maximize the production of urea per unit time with due regard to cost of recycling unreacted NH₃ and CO₂, the cost increase of reactor size, corrosion difficulties. NOT to increase the percentage of conversion.

Typical Operating Conditions:

- T: $180 210^{\circ}$ C NH₃:CO₂ = 3.1 4.1
- P: 140 250 atm Retention time: 20-30 min

Urea Processes

- □ Once Through
- Partial recycle
- □ Total recycle (All new plants)
 - Stamicarbon: ZFCL, KAFCO
 - Snamprogetti (Snam): JFCL
 - Mitsu Toatsu (M T): UFFL Before 1990.
 - Advanced Cost and Energy Saving (ACES) by TEC: UFFL (After 1990), CUFL

Once Through Process

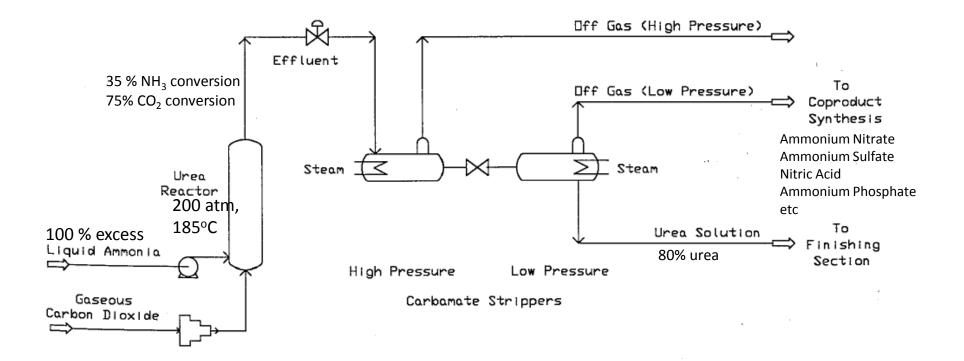
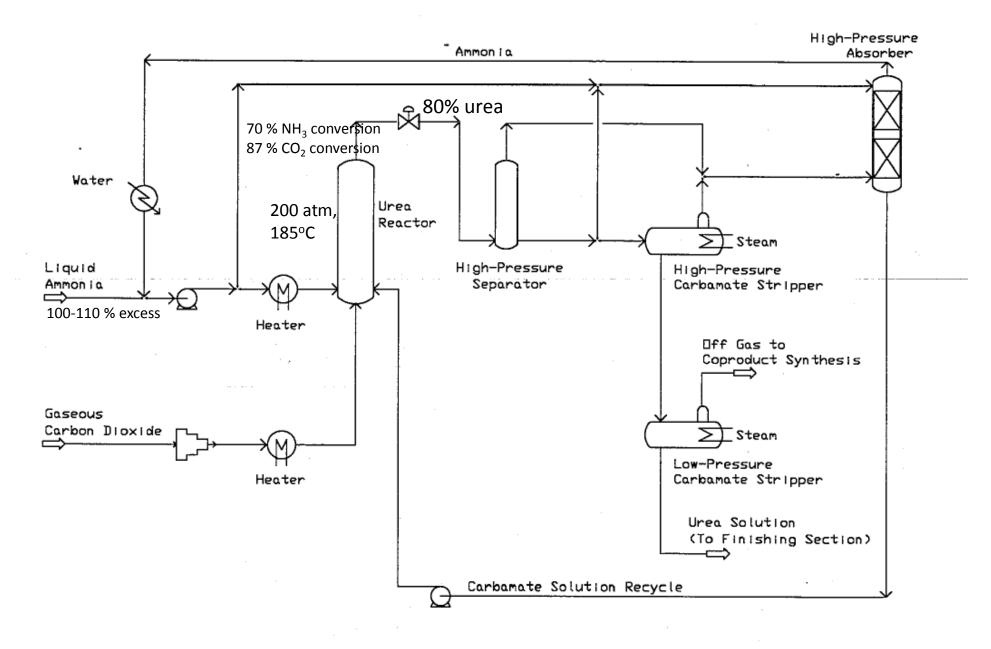
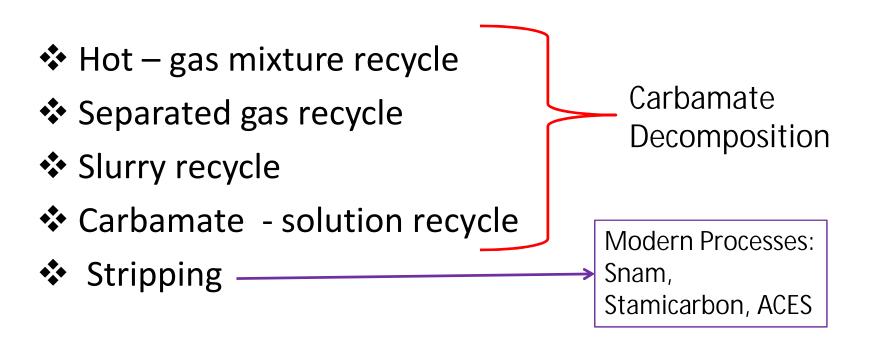



Figure 9.1. Typical Once-Through Urea Process.

- The once through process is simplest and least expansive (both capital and operating cost) among the three process.
- Least flexible and cannot be operated unless some provision is made to utilize large amount of ammonia and off-gas.

Partial Recycle Process

- Part of the off gas is recycled back to the reactor.
- The amount of ammonia is reduced to 15% to that of once through that must be used in other processes.
- Investment cost is somewhat lower than the total recycle process, this advantage apparently does not compensate the inflexibility arising from the necessity to operate a co-product plant with mutual interdependency problems. However it finds application in UAN co-product plants.

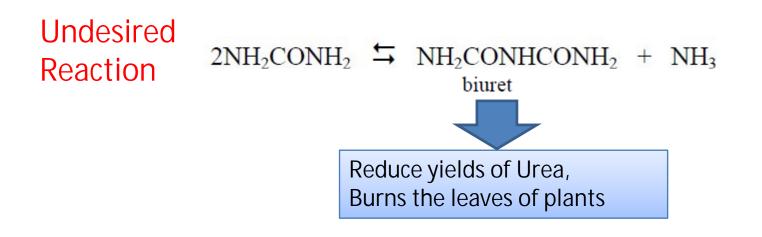


Total Recycle Processes

- All unconverted NH_3 and CO_2 is recycled back to the reactor (99% conversion).
- No nitrogen co-product is necessary.
- Most flexible urea process as it depends only NH₃ and CO₂ supply.
- Most expensive in investment and operating cost.

Classification of Total recycle Processes

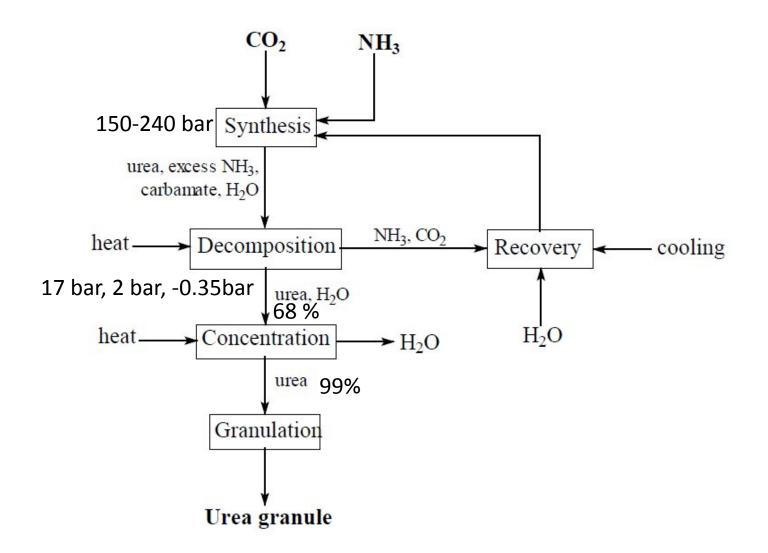
Reactor outlet contains UREA, NH₃, CO₂, H₂O, and CARBAMATE which must be decomposed before recycle. NH₂CO₂NH₄ \subsetneqq CO₂ + 2NH₃



The general design objectives are:

- Maximize the heat recovery
- Minimize the amount of carbamate solution recycled (smaller pumps and less power) and amount of water returned to the reactor (better conversion).
- Minimize power requirement
- Maximize ammonia recovery (lowering operating cost and less pollution)
- Other important requirement is of-course minimizing investment. The problem is finding the best balance between the utility consumption and maintenance on one hand and investment on the other hand.

Urea Manufacturing Process


Desired $2NH_3$ (liquid) + CO_2 (gas) = NH_4COONH_4 +38.06 Kcal/mol Reactions NH_4COONH_4 = NH_2CONH_2 + H_2O -522 Kcal/mol

Three major design considerations:

- to separate the urea from other constituents,
- to recover excess NH₃ and
- decompose the carbamate for recycle.

Block Diagram of Urea Synthesis

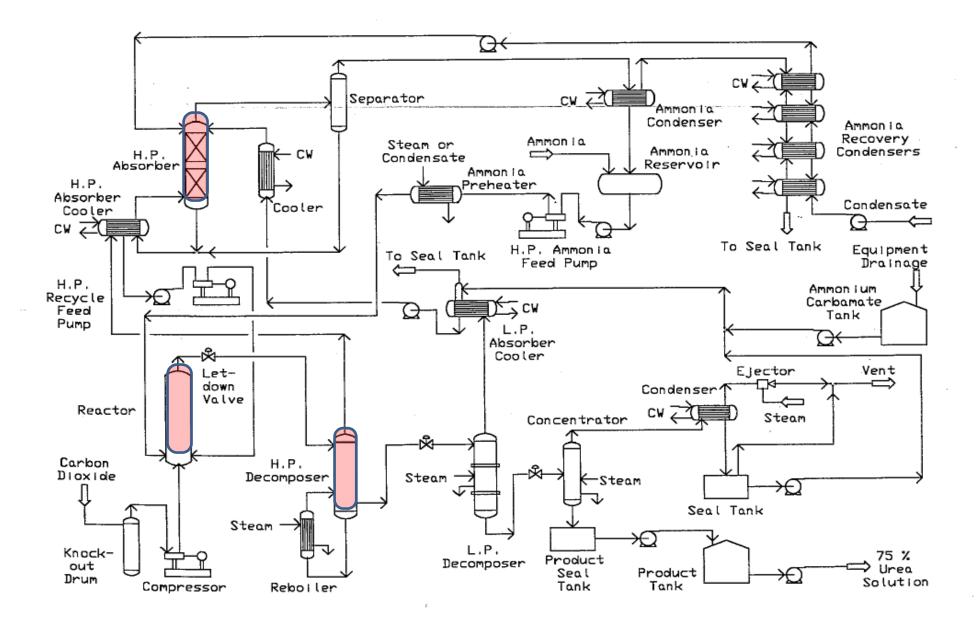


Figure 9.3. Typical Total-Recycle Urea Process (TVA Plant). (Mitsui – Toatsu)

Stripping Process Based Plants

- In 1966 Stamicarbon of Netherland introduced CO₂ stripping
 → Snamprogetti built a plant using NH₃ as stripping process
 (requires high NH₃:CO₂ ratio) later switched to thermal
 stripping → Toyo Engineering Corpora on (TEC) Japan
 utilized CO₂ stripping.
- Three licensors have different approaches and have improved their technology throughout the years.
 - Closely stoichiometric amount of raw material consumption
 - Reduced steam consumption to an apparently economic level
 - Avenues available for improvements in reduction of capital cost, improved reliability and efficiency of mechanical improvements and advances in metallurgical advances.

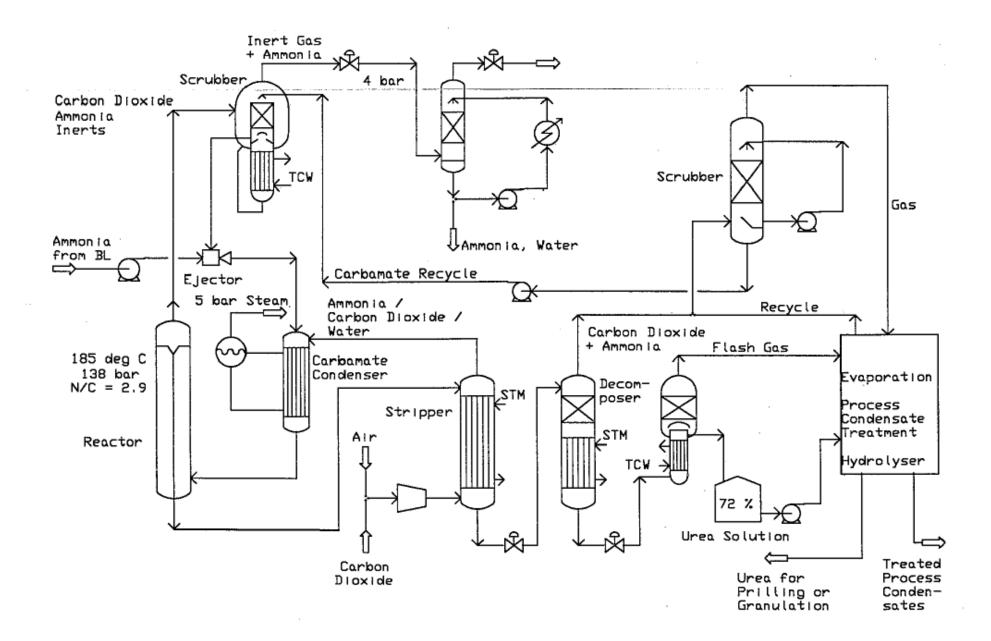
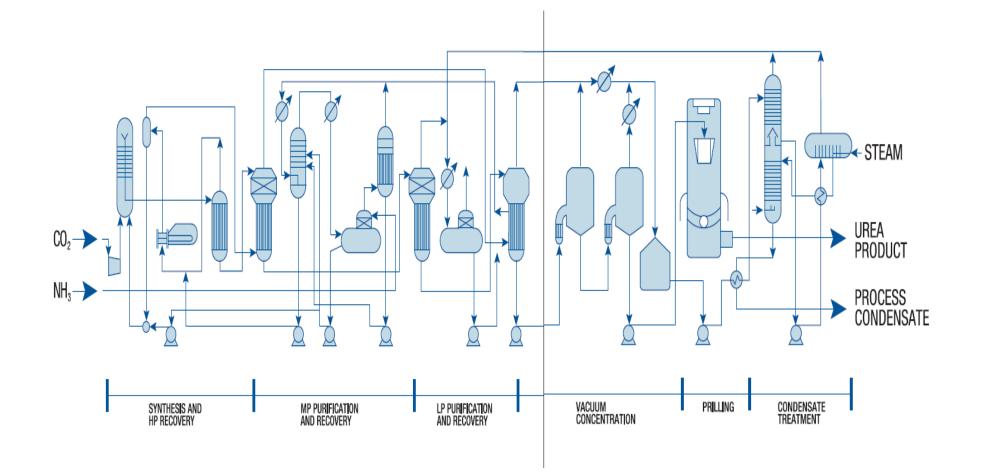



Figure 9.4. Stamicarbon CO₂ Stripping Process.

Snamprogetti process

Six section

- Synthesis and high pressure (HP) recovery (160 bar)
- Medium pressure (MP) purification and recovery (17 bar)
- Low pressure (LP) purification and recovery (3.5 bar)
- Vacuum concentration (2 steps: 0.3 and 0.03 bar abs)
- Process condensate treatment
- Finishing: prilling and granulation

Snamprogetti Process Flow Diagram

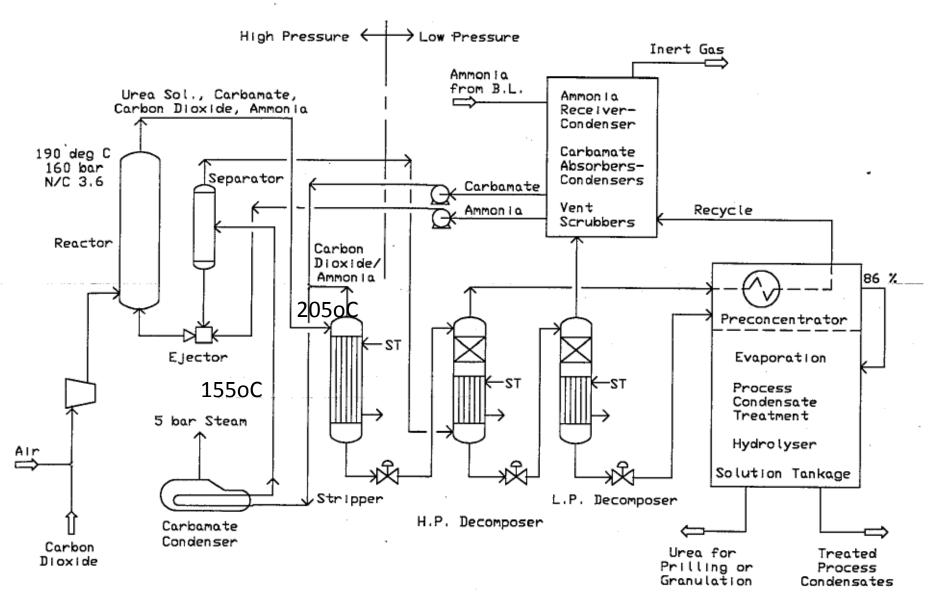
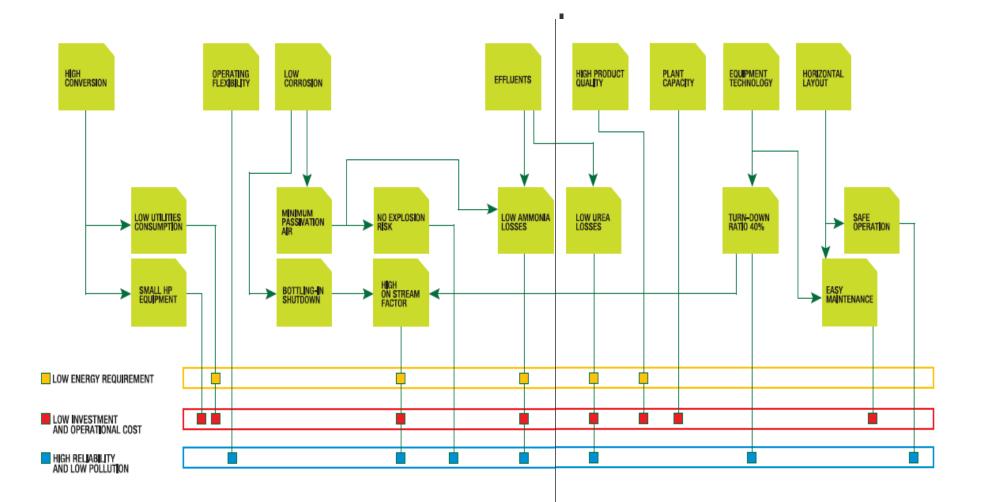



Figure 9.5. Snamprogetti Thermal Stripping Urea Process.

Key Features of Snamprogetti Process

ACES plant (UFFL)

1990 – Renovation. From 1994 – ACES is operating Five section

- Synthesis sections
- Purification section
- Concentration and prilling section
- Recovery section
- Process condensate treatment section

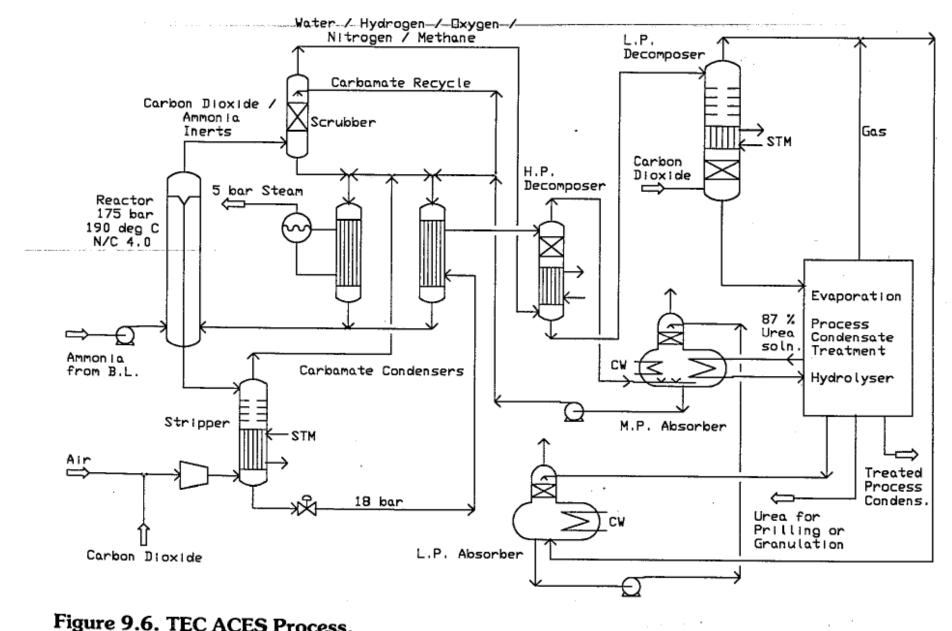


Figure 9.6. TEC ACES Process.

Table 9.2. Urea Process Operating Conditions/Requirements [5]

	Snamprogetti	Stamicarbon	TEC ACES
	Thermal Stripping	CO ₂ Stripping	Process
Reactor pressure, atm	$156 \\ 188 \\ 3.3-3.6 \\ 0.5-0.6 \\ 64 \\ 41$	140	175
Reactor temperature, °C		183	190
Molar NH ₃ /CO ₂ ratio		2.95	4.0
Molar H ₂ O/CO ₂ ratio		0.39	0.6
CO ₂ conversion in reactor, %		60	6.8
NH ₃ conversion in reactor, %		36	34
CO_2 conversion in synthesis, % NH ₃ conversion in synthesis, % No. of high-pressure vessels –	84 47	79 79	NA NA
synthesis	5	4	5
Recirculation – stages	2	1	2
NH_3 consumption, t/t CO_2 consumption, t/t	0.566ª	0.566ª	0.568
	0.735ª	0.733ª	0.735/0.740
	0.950	0.920	0.80
Import steam, t/t ^b Cooling water, t/t ^b Electricity, kWh/t ^b	75 21-23	70 15	80 15
Liquid effluent	2	1	5
Free NH ₃ , ppmw	2		5
Urea, ppmw Hydrolyzer steam pressure, bar	38	25	25

Note: NA = not available.

a. Based on final product-urea granules containing ±4.5 kg formaldehyde/tonne product, using UF85 (urea+biuret 25%, formaldehyde 60%, water 15%).

b. Depending on plant location and available utilities, these figures can vary greatly. The plants can easily be designed for minimum steam or minimum electric power; the decision is on a cost basis.

Class Test 2

Date: 14 August, 2010 (or Next available date after 14) Syllabus: Stamicarbon, Snamprogetti and ACES process.

Free Tips: Memorize as much as you can !!!!